Sec61p Is Required for ERAD-L

نویسندگان

  • Martin Willer
  • Gabriella M. A. Forte
  • Colin J. Stirling
چکیده

Misfolded proteins in the endoplasmic reticulum (ER) are exported to the cytosol for degradation by the proteasome in a process known as ER-associated degradation (ERAD). CPY* is a well characterized ERAD substrate whose degradation is dependent upon the Hrd1 complex. However, although the functions of some of the components of this complex are known, the nature of the protein dislocation channel remains obscure. Sec61p has been suggested as an obvious candidate because of its role as a protein-conducting channel through which polypeptides are initially translocated into the ER. However, it has not yet been possible to functionally dissect any role for Sec61p in dislocation from its essential function in translocation. By changing the translocation properties of a series of novel ERAD substrates, we are able to separate these two events and find that functional Sec61p is essential for the ERAD-L pathway.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sec61p is part of the endoplasmic reticulum-associated degradation machinery.

Endoplasmic reticulum-associated degradation (ERAD) is a cellular pathway for the disposal of misfolded secretory proteins. This process comprises recognition of the misfolded proteins followed by their retro-translocation across the ER membrane into the cytosol in which polyubiquitination and proteasomal degradation occur. A variety of data imply that the protein import channel Sec61p has a fu...

متن کامل

Role of Sec61p in the ER-associated degradation of short-lived transmembrane proteins

Misfolded proteins in the endoplasmic reticulum (ER) are identified and degraded by the ER-associated degradation pathway (ERAD), a component of ER quality control. In ERAD, misfolded proteins are removed from the ER by retrotranslocation into the cytosol where they are degraded by the ubiquitin-proteasome system. The identity of the specific protein components responsible for retrotranslocatio...

متن کامل

AAA-ATPase p97/Cdc48p, a cytosolic chaperone required for endoplasmic reticulum-associated protein degradation.

Endoplasmic reticulum-associated degradation (ERAD) disposes of aberrant proteins in the secretory pathway. Protein substrates of ERAD are dislocated via the Sec61p translocon from the endoplasmic reticulum to the cytosol, where they are ubiquitinated and degraded by the proteasome. Since the Sec61p channel is also responsible for import of nascent proteins, this bidirectional passage should be...

متن کامل

Distinct machinery is required in Saccharomyces cerevisiae for the endoplasmic reticulum-associated degradation of a multispanning membrane protein and a soluble luminal protein.

The folding and assembly of proteins in the endoplasmic reticulum (ER) lumen and membrane are monitored by ER quality control. Misfolded or unassembled proteins are retained in the ER and, if they cannot fold or assemble correctly, ultimately undergo ER-associated degradation (ERAD) mediated by the ubiquitin-proteasome system. Whereas luminal and integral membrane ERAD substrates both require t...

متن کامل

Yeast Derlin Dfm1 interacts with Cdc48 and functions in ER homeostasis.

Recent studies have identified Derlin-1, a protein that associates with the AAA-ATPase p97 and is implicated in late steps in ER-associated protein degradation (ERAD). Derlin-1 has two Saccharomyces cerevisiae homologues, Der1p and Dfm1p. While Der1p has been studied extensively, little is known about Dfm1p. Accordingly, we investigated the role of Dfm1p in ERAD, ER homeostasis and interactions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Biological Chemistry

دوره 283  شماره 

صفحات  -

تاریخ انتشار 2008